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1. Introduction

Duct flows occur in a variety of engineering applications. They are present
in aircraft and automobile engines, heat exchangers, steam generators, and piping
systems. Often, the ducts have a noncircular cross section, which undergoes a
change of shape and size along the length of the duct. The purpose of the present
research project is to develop a calculation procedure for the prediction of flow
in such ducts.

Many duct flows are characterized by the absence of reverse flow or separa-
tion and by a nearly uniform pressure over any cross section. These conditions
are found when the change in the size and shape of the cross section is gradual
rather than sudden. Such flows can be treated as fully parabolic, i.e., they can
be predicted by a marching procedure starting at the inlet plane and proceeding
to successive cross-sectional planes downstream. The procedure described in this
report is of the fully parabolic variety.

If significant pressure variations arise over a cross section, they can be
incorporated in a procedure known as partially parabolic. In such a procedure,
the duct length must be swept many times by the marching calculation until the
three-dimensional pressure variations are properly established and used in the flow
calculation. If a reverse flow is present in the duct, a fully elliptic procedure

is needed for its calculatiom.

The fully parabolic procedure employed in this report calculates the flow over
3 . one cross section at a time. Thus, the computational task is almost the same as
solving a two-dimensional problem over a domain of arbitrary shape. The method of

Baliga and Patankar [1, 2] was chosen . to be the starting point for this purpose.

MORFR-ARNrES & A ZarRacen)

In the course of adapting that method, an improvement in the treatment of pressure

Y

was worked out. The two-dimensional calculation scheme along with the proposed

improvement is described in Section 2 of this report. The method has been tested




on a large number of problems to evaluate its correctness, accuracy, convergence,
and other behavior. Results of some of the test problems are presented in Section
3.

The extension of the two-dimensional method to three-dimensional duct flows
is described in Section 4. Section 5 is devoted to some applications of the
method. They include the developing flow in some constant-area ducts; but of
particular importance are the calculations for two ducts of varying cross-sectional

area and shape.
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2. Method for two-dimensional flows

When a three-dimensional duct flow is treated as fully parabolic in nature,
its calculation is performed by a marching procedure in the main flow direction.
At each marching station, a computationally two-dimensional problem is solved over
the dﬁct cross section. Thus, a procedure for two-dimensional flows forms an
essential building block of the method for three-dimensional parabolic flows. The
two-dimensional procedure employed in the present work is described in this section.
It was intended to employ the two-dimensional finite-element procedure of
Baliga and Patankar {1, 2] for this building block. However, the treatment of the
pressure field in [2] is somewhat inconvenient; therefore, an improved treatment was
worked out. It is this improved procedure that is described here.

2.1 Govérning differential equation

As described in [3], the fluid flow and heat transfer phenomena in steady state

are governed by a general differential equation of the form:

23 - (3
3%, (puj¢) a"j (r ij) +S (2.1)

where ¢ is the general dependent variable, puj

the convective transport, I' is the diffusion coefficient, and S represents the source

denotes the mass flow rate causing

term. The variable ¢ can stand for enthalpy (or temperature), concentration, turbu-
" lence energy, or a velocity component. Thus, a solution procedure for any convective
T phenomenon should provide a mechanism for solving Eq. (2.1).

2.2 Domain discretization

S In the calculation procedure described in [1, 2], the physical domain of inter-
est is discretized into triangular elements as shown in Fig. 2.1. The verttees of
{f the triangles are called nodes or grid points. The aim of the calculation scheme is

to obtain the values of ¢ at these nodes.
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Fig. 2.1 Domain discretization
The algebraic equations for the ¢ values at the nodes are obtained by integrating
Eq. (2.1) over the polygonal control volume associated with each node. The construc-
tion of these control volumes is also shown in Fig. 2.1. Each triangular element is
split into three parts by joining its centroid to the centers of the three sides. The
control volume around a typical node P is composed of the parts of all the neighboring
triangles that contain the point P,

2.3 Discretization equation

The discretization form of Eq. (2.1) is obtained by integrating the differential
equation over a control volume. Such integral equation consists of the total source
term S over the control volume and the net convecton and diffusion flux across the.
faces of the control volume. As seen from Fig. 2.1, the control-volume faces are
composed of the dashed lines that lie within each triangle. To express the total
flux (i.e., the convection flux plus the diffusion flux) across such a dashed line

in terms of the nodal values of ¢, a shape function is required.

As explained in [1], an appropriate shape function for convection-diffusion

problems i{s one that takes account of the resultant flow direction. The shape
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function suggested in [1] and implemented in this work is

»
s

. ¢ = A+ B exp(pUX/T) + CY (2.2)

. g: where, as shown in Fig. 2.2, the coordinate X is aligned in the resultant flow dir- .

R ection, while Y is taken as normal to it. The quantity U represents the magnitude ;;4
- | B

of the velocity vector. The constants A, B, and C in Eq. (2.2) are expressible in

terms of ¢1, ¢2, ¢3 at the three nodes of the triangle.
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a Fig. 2.2 Coordinate axes for shape function
.o The use of Eq. (2.2) in the integral equation for the control volume leads to
. o the algebraic equation
a, ¢P = Zanb ¢nb +b (2.3)
- where the subscript nb denotes a neighbor node of P and the summation is taken Lfi

over all the neighbors of P. The coefficients a, and a , represent the convection- o
. diffusion influence, while b contains the integral of the source term S over the

control volume.

2.4 Solution of he discre’ .zatjon equations Eﬁj

The algebraic _iativas such as (2.3) form a set of linear simultaneous equa-

tions. They can be solved by a variety of methods. In the computer implementation
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of the proposed method, the domain discretization is performed by the use of a
line structure. Although this places some restriction on the shape of the domain
or on the local grid fineness, the technique provides considerable convenience in
node numbering and in the solution of equations. With the nodes arranged on a
line pattern, the line-by-line method [3] becomes the natural choice for solving
the algebraic equations. It is this method that is employed in the present work,

2.5 Calculation of fluid flow

Although the general dependent variable ¢ can stand for the two velocity com-
ponents u and v in a two-dimensional flow and thus a calculation procedure for fluid
flow is contained within the general procedure for solving Eq. (2.1), there is an
important complication. The source term S contains the pressure gradient ap/3x or
op/dy when ¢ stands for u or v. The pressure field p represents an extra degree of
freedom and it is indirectly constrained by the requirement that the velocity field
must satisfy the continuity equation

3 (Pu

En 3

The combined treatment of the momentum and continuity equations forms the special

) =0 (2.4)

features of a fluid-flow calculation.

If the velocity components and press're are stored at the same grid points,
then the required interpolations of pressure and velocity lead to discretization
equations that admit unrealistic zig-zag velocity fields and checkerboard pressure
fields. This is explained at length in [3]. The remedy adopted in finite-difference
methods is a staggered grid, in which the velocity components are stored at locatioms
that are displaced (or staggered) relative to the pressure nodes. The same remedy
is not available in finite element methods, since the lines joining adjacent nodes
do not lie along the coordinate directions. The common remedy is a mixed-inter-

polation (or unequal-order) scheme, in which pressure is stored at fewer locations
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than the velocity components. This practice is employed in (2] and also by earlier
workers.

Although the unequal-order procedure is adequate, it is not entirely satis-
factory. It leads to complications in numbering sequences, control-volume defini-
tions, etc., since the pressure grid and the velocity grid must be handled separa-
tely. Moreover, the coarser grid used for pressure would limit the accuracy of the
solution. If the pressure grid is made sufficiently fine, the associated velocity
grid becomes excessively fine and thus wasteful. In the interests of convenience
and efficiency, an equal-order procedure is thus sought.

2.6 Discretized momentum equations

Since the momentum equations are special cases of the general differential

equation (2.1), they can be cast into the discretization form similar to Eq. (2.3).

Thus
u
aP uP z a LUy +b (2.5)
v
aP v? z a . Vb +b (2.6)

where b" and b’ are the integrals (over of the control volume) of the source terms
(s - 3/ 3x) and (¥ - 3p/3y)
tespectively.
For further rearrangement of the equations, pseudovelocities 4 and ¢ are

defined by

Gp = (T ayu,)ap (2.7)
and

Up = (Zanb vnb)/aP (2.8)
Then the momentum equations (2.5) and (2.6) can be rewritten as

up = Gy + a¥ (s" -3p/3x) (2.9)

.
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and

=3 v v - (2.10)
vp = Vp +dT (ST -dp/ay)

where the subscript c.v. indicates an average value over the control volume. The

multipliers d% and d¥ can be seen to be

d" = a" = AV/a, (2.11) ,

where AV is the volume of the control volume. ;?
No novelty has yet been introduced. If, in the continuity equation, a linear »§i

—-—

interpolation of u and v is used, the well-known difficulties associated with .u
storing all variables at every node would result. The equal-order procedure here ;;5
is developed by proposing a different interpolation technique for the continuity ;?%
]

equation. This technique is described next.

2.7 Treatment of the continuity equation

The discretized form of Eq. (2.4) would contain mass flow rates across the
boundaries of a typical control volume shown in Fig. 2.1. These flow rates can be
compiled by calculating the flow crossing the three dashed line segments in every

element. A typical element is shown in Fig. 2.3 .

Fig. 2.3 Control-volume faces within an element
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Although it is possible to calculate u and v at any point within the element s

by a linear interpolation between the nodal values of u and v, the practice proposed E!{%
here makes the velocities appearing in the continuity equation directly responsive ;i;%
to the pressure gradient over the element. Thus, for the purpose of the continuity ;iﬁ
equation, the velocity field within an element is calculated from u and Vv, where ®
i=a+a" [Su - Bp/Bx]e (2.12) }ii

V=9+d" sV - ap/oy), (2.13) -__J

where the subscript e indicates the element under consideration. The source terms ,%i
s" and Sv are considered to be uniform over an e;ement. Further, if the pressure p fﬁi
is described by a linear shape function o§ef the element, the gradients 9p/3x and :ifg
op/3y also beco;é uniform. The calculation of G, ¥, du,and dV at the nodes has ...
been outlined in Eqs. (2.7), (2.8), and (2.11). For the calculation of u and Vv éf
from Eqs. (2.12)-(2.13), the values of u, v, d", and d' are considered to vary ii
linearly over the element. As a result, the u and v values would have a linear ':?
distribution. g

That the u and v field as given by Eqs. (2.12)-(2.13) is "driven" directly by Ei;}

the nodal pressures in a given element is the essential feature of this formulation.
This eliminates the possibility of checkerboard pressure fields.

To obtain a discretization equation for pressure, first a discretized form of
the continuity equation is written by integrating it over the typical control
volume shown in Fig. 2.1. The mass flow rates across the faces of the control
volume are expressed in terms of u and V defined in Eqs. (2.12) - (2.13). The

pressure gradients 9p/dx and 9p/dy are written in terms of the nodal pressure.

The result is the following discretization equation for p, which has the same appear-
ance as Eq. (2.3)

) a, pp =L a, P th (2.14)
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where P denotes a typical node shown in Fig. 2.1, nb stands for a neighbor node ?i
of P, and the summation is taken over all the neighbors. The coefficients a, and ;j
a , arise from the multipliers d¥ and 4 in Eqs. (2.12)-(2.13). The term b in ij
Eq. (2.14) contains a, V, Su, and SV. Since the structure of Eq. (2.14) is identical ;i
to that of Eq. (2.3), the line-by-line solution method mentioned in Section 2.4 is ‘:
applicable to Eq. (2.14) as well. ]
An alternative form of Eq. (2.14) can be derived by defining a pressure cor- ‘é
rection p' such that ¥

p ='p* + p' (2.15) .

C -
0
N

where p* is the current estimate or guess for pressure. If the momentum equations
(2.5) - (2.6) are solved by substituting the guessed pressure field p*, the resulting
velocities can be denoted by u* and v* Consequently, a velocity field u* and v*
can be obtained from Eqs. (2.12) - (2.13) by substituting p* for p and by calculating
4 and ¢ from the u’and v*values. Then the counterpart of Eq. (2.14) can be written

as

L - [}
ap Pp z a. Py +b (2.16)

where ap and a, are Identical to the corresponding coefficients in Eq. (2.14) and b
results from the substitution of the ﬂ* and v* field in the continuity equation.

2.8 The overall solution procedure

Since all the ingredients of the calculation procedure have been outlined, the
overall procedure can now be described in terms of the various steps in the calcu-

lation sequence.

(1) Start with initial guesses for u, v, u, v, and other relevant variables.
(2) Calculate the coefficients in the momentum equations for u and v.
(3) Hence obtain i, V, d”, and d'from Eqs. (2.7), (2.8), and (2.11).

(4) Set up Eq. (2.14) and solve it to get a pressure field.

(5) Treating this as p*, solve the momentum equations to obtain u* and v,
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(6) Hence set up the pressure-correction equation (2.16) and solve it.
Use the resulting p' values to correct u*, v*, u* and v*¥ . At this stage, the ™Y
corrected field ﬁ, v would satisfy continuity.
(7) Solve Eq. (2.3) for other relevant dependent variables such as tempera-
ture, concentration, turbulence parameters, etc. i;j
(8) Return to step 2 and repeat until convergence. fi;
iiﬁ
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3. Application of the method to some two-dimensional problems

In this section, the proposed method is applied to three test problems.

3.1 Flow between two concentric rotating cylinders

The flow of an incompressible fluid between two concentric rotating cylinders
is shown schematically in Fig. 3.1. The inner cylinder is supposed to be at rest
while the outer cylinder rotates with angular velocity w. 1In the (r-9) polar
coordinates, this is a one-dimensional problem with the radial component of velo-
city u. being identically zero. However, in the Cartesian coordinates (x-y),
the problem is fully two-dimensional, wiih non-vanishing velocity components u and
v along the x and y coordinates respectively. The aim here is to solve this two-
dimensional problem in the x-y coordinates over a square region R shown shaded
in Fig. 3.1.

The exact solution

Let Ugs U and p be, respectively, the circumferential velocity, the radial
velocity and pressure. Also let u and v be the velocity components along the
x and y directions. At this point, the following dimensionless variables are

introduced. u
* 8
=

) 2w (3.1)

£ Yp
T (3.2)

(p-p.)
¥om — (3.3)

p(zr]w)2

% ] (3-4)

u = IZr‘wj

* V] (3-5)
= ZZr‘w5

Xt (3.6)
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* x

x == 3.7) "

1

* Yy (3.8) .'
Y *T

|

where, p is the fluid density, and po is the reference pressure on inner cylinder

S R,

(r*rl). For a radius ratio of 2 between the outer and inner cylinders, as shown .}
in Fig. 3.1, the exact solution to the problem is given by zf
* % (3.9) o
AEEE Sl =
. r '1
* -
u . =0 (3.10) :
r
and
R ¥ R 8 x
S A R (3.11)
from which it follows that
x oy .
u -_2_(r - ‘_*_) L* (3 12)
3 r r
and
. %
v = - _Z_(r* - —:;)5? (3.13)
3 rr

Domain discretization

Figure 3.2 shows the discretization of the computational domain into quadri-
laterals and further subdivision of these quadrilaterals into triangular elements.

As can be seen, the uniform N x N grid has a spacing Ax* = Ay* = §, where,

'/ /2 (3.14)

o Results were obtained for four different grid sizes corresponding to N = 9, 13, 17

and 21.
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Fig. 3.1 Flow between rotating cylinders
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Results ;:é
—_— 1
(1) Table 3-1(A) shows the variation of percentage error in u* at the mid i;‘

point of the computational domain with Reynolds number and grid size. The percent-~

»
alalal

age error is defined as:

order method of Baliga and Patankar [2] for a 21 x 21 grid. Comparison of these

with the present results for a 21 x 21 grid (Table 3-1(A)) shows that the proposed

u* oy®
d
- percentage error in u* = 100 ex::t computed | (3.15)

S exact

:

- where u* is the exact value of u* given by Eq. (3.12) and u®* S
- exact computed C
E is the numerically computed value. i;i
t - As can be seen in Table 3-1(A), the percentage error increases with Reynolds -4
t number at any given grid size. For any given Reynolds number, the error decreases fzf
s :i continuously as the grid is refined. Table 3-1(B) shows the results of unequal iéi

method gives lower error or better results.
(11) Let € be the average of the percentage error defined in Eq. (3.15).

Further, let

€=aqadP | (3.16)
where o is a constant and p is the so-called 'order of convergence'. If Ei and
Eé are the values of € for grid size 61 and 62 respectively, p can be determined
from

In(e))-1n(E,)

P = Tnl8,)-Tn(5,)

Table 3-2(A) shows the variation of € with grid size and Reynolds number for

(3.17)

the equal order method. Also included in this table are the values of order of con-
vergence p obtained using the results of 17 x 17 and 21 x 21 grid. As can be seen,
the percentage error over the domain,'E increases with Reynolds number for any fixed

grid size. Also, at any fixed Reynolds number € decreases with increasing grid

rf WEEREWVTEOW VTR TSR W O .« s e

size confirming that the computed solution converges to the exact solution as the

grid is refined. From the tabulated values of p, it may be inferred that the order
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TABLE 3-1(A)
" Percentage error in u* at the center of domain - equal order method
Re
Grid 1 10 100 1000
- 9x9 .0213 L9 .158 .837
13 x 13 .0107 .067 .268 342
17 x 17 .00618 .0378 .238 .206
21 x 21 .00404 .0241 .193 149

TABLE 3-1(B)

Percentage error in u* at the center of domain - unequal order method

Re
Grid ' ] 10 100 1000

’ 21 x 21 .02 . . i
- 034 264 287
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TABLE 3-2(A)

TN, e .

Average percentage error in u* over the domain - equal order method

Re
Grid; 8 1 10 100 1000
9 x 9; .125//2 .0609 .0952 .337 .637
13 x 13; .0833/v2 | .0251 .0h42 .222 .345
17 x 17; .0625//2 | .0135 .025 .157 .226
21 x 21; .08//2 .00846 .0162 L1k . 166
Order of converg- [2.094 1.944 1.434 1.383
ence p, using
results of 17x17
21x21 grids
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TABLE 3-2(B) -

Average percentage error in u* over the domain - unequal order method Ei
Re ' .i

Grid; 8 ) 10 100 1000 §§
17 x 17; .0625/YZ |  .050 .093 545 .803 i
21 x 21; .05//2 .03k .060 .ko7 .594 j
Order of con- 1.728 1.964 1.308 1.351 :3
vergence p _5
L.

L=

>
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of convergence of the method is between 1 and 2.

Table 3-2(B) shows the corresponding results for the unequal order method of e
Baliga and Patankar [2]. ;E

(1i1) Fig. 3.3(a) shows a comparison between the exact and computed solution {j
for pressure distribution along the main diagonal of the computational domain. The E:
computed results shown are for the finest, i.e., 21 x 21 grid. As is evident, the  £
computed results are in excellent agreement with the exact solution for all values L
of Reynolds number. ij

Figure 3.3(b) shows the resulits obtained by using relatively coarse grids for
a fixed Reynolds number of 1. It can be seen that the results are fairly good even
at rather sparse grids. The error in the computed pressure distribution is higher
at points close to the boundary of the domain compared to the errors at points which
are in the core of the domain.

3.2 The driven cavity problem

The problem of flow in a square cavity with one moving wall is sketched in

Fig. 3.4. As shown in this figure, three sides of the square cavity are at rest

while the fourth, the top wall, moves tangentially with a velocity U Burgraff
[4] solved this problem using a very fine (52 x 52) grid. Burgraff's results are

taken as a standard of comparison for the results obtained using the proposed equal

order method.

Computational details

The computational domain is shown in Fig. 3.5. The domain discretization is

also shown in this figure for a 13 x 13 grid. The grid was kept finer near the

-'.
o
N .
.
Lil
-

i
!

walls than in the core so that, at higher Reynolds numbers, the thin boundary layers
close to the walls could be resolved. The position of the first two grid lines

parallel to each wall was always kept fixed, being at a distance of .05 and .1 f~om

'l"ﬂ o
. . St
Lale icafal

the wall. Grid refinement only changed the spacing § between the interior grid lines.
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Consequently, for a N x N grid,

J1=Ctn-cn _ .8 (3.18)
8 N-3) ™N-5)

Results

(1) Figure 3.6(a) shows results for the u velocity along the vertical center-
line (x = L/2). The results of the equal order method are for a 21 x 21 (N=21)
grid. At Reynolds numbers of 1 and 100, the computed results show very good agree-
ment with the results of Burgraff; in particular, the difference between the two
cannot be resolved on the graphical scale of Fig. 3.6(a). At a high Reynolds
number of 400, the computed results are infair agreement with the results of Burgraff
except close to the region where the gradient of velocity, i.e. 3u/dy, changes sign.
It is possible that the 21 x 21 grid used for the equal order méthod is not enough to
resolve the thin boundary layers close to the walls occurring for Re = 400.

Figure 3.6(b) shows how the solution evolves with grid refinement by the equal
order method. The three grid sizes shown correspond to N = 9, 13 and 21 with cor-
responding § (see Fig. 3.5) of .2, .1 and .0S5.

(ii) For two-dimensional incompressible flow, the stream function ' is defined

surh that:
u= (3.19)
oy
v = - (3.20)
ax
from which it follows
2 2 3y ™ (3.21)
ax Ay

After the velocity field had been computed, the Poisson equation (3.21) was solved

numeriz.lly to get the stream function at all grid points.

M . dendoted intuiafesiansindig Sttt : S —————_——— e A A

2.

1
FOeN

. . . P e
A . T
LN PSSP R Y

N v




Y W TN TR T T —r——

i b

R T e R ]

siaqunu
SPTOU4ay SnoTIeA 10J SUFTIaIUad
SPT43 snoyiea 103 arrjoiad £3ydorap  (4)9°¢ 814 TedT1318A 3y3 uo aTF3oad £310073p (e)9°¢ -S14
3(n/n) 3(Mn/n)
.— -. a. .. N. . N. - ,.l D.l -.l .-0 ] .. O. '- ﬂ. . N. - '.l .. - ..l .— -
— 1 1T 1T KN T T 1T 1T ]0 T T 1T KN T 1. T 1T 10
10 jesBBung -~ 1r
v poyaIsw J9pao U
- jenbea
1 ¢ -
-y
\ uGLQQLJJ
o~ -1
b
1y
1t

poyjew
\/...“3..0 jenbe-]
nwxu

el ¢

T ot Jpub

2

PO W Ty ala




T T I T T Y T T T T T T T T N T T e T e N TR e T LSS T T e Ty

) . ]

<l

R

o

-23- .J

1

The streamline plots are shown in Figs. 3.7 - 3.9 for Reynolds number of 1, _—

»

100 and 400 respectively. The results computed by the proposed equal order method oo

show a good agreement with the results of Burgraff. The separated flows at the ;;j

bottom corners are correctly picked up at even coarse grids. :5
]

3.3 Natural convection in a square cavity fi

The problem of natural convection in a square cavity, shown schematically in ff

Fig. 3.10, is used as another test problem. The hot and cold vertical walls are ;:
[ ]

both isothermal at temperature TH and.TC respectively. The top and bottom horizontal fi

walls are adiabatic. The flow is assumed to be incompressible except for the calcu- 55

lation of driving buoyancy forces. Also, all properties of the fluid are assumed
constant.

Since the problem does not have an exact analytic solution, the results computed
by the proposed equal order method will be compared to those obtained by a finite
difference technique on a very fine (32 x 32) grid. Because of the fine grid used,
the results of the finite-difference method are regarded as "exact'". The domain was
discretized into a uniform N x N grid as shown in Fig. 3.11.

Results
The problem is governed by two dimensionless parameters, namely, the Grashof

number and the Prandtl number. In the presented computations, the value of Prandtl
4

number was kept fixed at 1, while the Grashof number was assigned values 103, 10

and 105.

(1) Figures 3.12-3.14 show the variation of vertical velocity and temperature

along the horizontal mid plane (y/L = .5) for Grashof numbers of 103, 10% and 105.
Even thougl. the results of the proposed method have been obtained on a coarser grid,
thelr accuracy is as good as that given by the fine-grid finite-difference solution.

(11) The average Nusselt number on the hot wall is defined as
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-

tt

«
i Y v . . W . " . PR PR PRV -LJ
PP G DR WU AL VST I UTINE WAL VR SO TP W (P SOUE TPUr T Uy W Wy 9 N o A s b " 2

Friormwer.




LER A SR e s B ae o, ane aus

Clantaue “uste Sstnt depn

-24-

i1x§ Grid

.....
——
-

1x13 Grid

Ux Gricd

-
[}
']
o
1 3
o]
U
[
[}
o
[
o
o
o
(=9
V]
]
m
(]
[
| o
o
(/2]
~
[1e]
0
-
<]

T e -

@ % 3 * % 6 _ s aay s & s oo o & & om oammn o a




., 4
e

ke

v

Bx13 Grid Burgraff

AxN1 Grid

Fig. 3.8 Streamline patterns for Re = 100
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Fig. 3.9 Streamline patterns for Re = 400
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Nu = -2 (3.22)

where, havis the average heat transfer coefficient defined from

qav

hav = T (3.23)

9! the average heat flux being given by,

L

1
-~ d
9, " T é q(y)dy

(3.24)

Table 3-3 shows the results for the average Nusselt number on the hot wall

computed using the equal order method. The results have been cross tabulated

against the grid size and Grashof number. For extrapolating the computed results

to those corresponding to § = 0 (infinitely fine grid), a Richardson extrapolation

has been applied. Thus

- P (3.25)
Nuav(é) Nuav(O) +ad

Table 3-3

Average Nusselt number in the duct, convergence study

Nuav for Gr =

Grid § 103 10 10

1 x 1 A 1.1084 2.2112 L.261

15 x 1§ .07143 1.1125 2.2302 4.4069

19 x 19 .05556 1.1146 2.2408 L.4719

Extrapolated value 1.1202 2.2793 L.5909
as & »

Value obtained by
F D method; 32 x 32 1.1203 2.2825 L.7755
Grid

o
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where o and p are some constants, and Nuav(O) is the value of Nuav for 6 = 0. If

Nuav is computed for three values of 8, Equation (3.25) can be inverted to obtain

el dpniann

et
g ot
L,
TN

Nuav(O), o and p. Table 3-3 includes the value of Nuav(O).
It is clear from Table 3-3 that the computed values of average Nusselt number

are in very good agreement with those obtained by the fine-grid finite-difference

o
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4. Method for three-dimensional duct flows
Three-dimensional duct flows can often be treated as fully parabolic, i.e. they ‘{1
can be solved by a marching procedure that begins at an upstream end and visits suc- i;i
cessive cross sections towards the downstream end. The computational problem at each ;if
[ ]

cross section is essentially two-dimensional and the procedure described in Section 2

can be employed. The complete procedure for the three-dimensional duct flow is pre-

PLPLTAPDY Y Y

STet I
PRI I
et et
Soa et

sented in this section.

4.1 Governing differential equation P;‘
For the coordinate system shown in Fig. 4.1, the counterpart of Eq. (2.1) for a o
three-dimensional parabolic flow can be written as f;
d 3 L&

3% (Pud) + 5 (OV8) + - (pu) ch

P N Iy 6.1) L

= 3 * 3y (r ay) +S (4.1 i

-

—_— main flow direction

. o
1
R

H » .
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B PPN AN

T
e
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downstream
plane

upstream
plane

LSy 2 4 E e g
~
<
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<A

Fig. 4.1 Coordinate system
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where the diffusion term in the main-stream direction z has been omitted in
conformity with the boundary-layer (or parabolic-flow) assumption. Once again,
the general dependent variable ¢ can stand for enthalpy, concentration, turbulence
parameters, and the velocity components, u, v, and w. When ¢ equals u or v, the
source terms S would contain the pressure gradient - 3p/3x or - 3p/3y; these will
be treated by the procedure described in Section 2. When ¢ stands for the main-
stream velocity w, the source term would include - 3p/3z. However, this will be
replaced by - d;/dz, where E represents a cross-sectional mean pressure. To
regard the velocity w to be "driven" by a mean pressure p and not affected by the
local variation of pressure p constitutes the basis of the fully parabolic treat-
ment. If the velocity w is allowed to be influenced by the local pressure p, the
resulting procedure is called partially parabolic. Construction of a partially
parabolic procedure represents a later task in the current research project.

4.2 Domain discretization

The advantage of a marching or parabolic procedure is that, although the
flow domain is three-dimensional, the entire duct need not be considered at once.
At any given station, the computational problem is to obtain, from the known
values of the variables on an upstream plane (see Fig. 4.1), the unknown values
of the variables on the next downstream plane. Successive repetition of this basic
operation is used to cover the total length of the duct. Restriction of the basic
comput ational module to the region between two planes implies that computer storage
is needed for the ¢ values only on the two planes and not throughout the entire
duct.

The domain is discretized by forming triangular elements over the upstream
and downstream planes. Corresponding typical elements are shown in Fig. 4.2, The
shape of the two planes need not be rectangular; any arbitrary shape of the duct

cross section can be adequately represenred by triangular elements. Further, the
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B IR

shape and size of the downstream plane neec not match the upstream plane.
Indeed, an ability to handle varying cross sections of arbitrary shape is one of ()
the objectives of the proposed calculation method. Only when the cross section

changes too rapidly from one station to the next, does the proposed fully parabolic

procedure become inapplicable; then the problem should be solved by a partially "

parabolic or even a fully elliptic procedure.

3 :
h >y — Mmain flow direction o
A2/

232

. . ""1:71 I
: - A .
. .
f
L B
Adbos Adsc. 2. "2 4

KU

LU
z
. downstream
AN plane
;- upstream
r plane

Fig. 4.2 Typical elements on the upstream and downstream planes
- The triangulation on the two planes must, however, have the same number of
triangles with a one~to-one correspondence between the elements. Thus, the tri=-
angulation of the downstream plane can be regarded as a stretched, compressed, or
t distorted version of the triangulation on the upstream plane. The element PKL
shown in Fig. 4.2 corresponds to the element PU-KU-LU on the upstream plane: the

size and orientation of these elements need not be the same. The dashed lines
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show how each triangle is subdivided for the construction of the control volumes. .i

The upstream and downstream faces of a typical control volume resemble the shaded i*
region shown in Fig. 2.1. The lateral faces of the control volume are formed by ‘

quadrilaterals such as bu-b-d-du formed by the points shown in Fig. 4.2. The i_

control volume has thus the shape of a prism with the shaded polygonal region in ;j

Fig. 2.1 as its base. i

4.3 Discretization equation :

The discretization form of Eq. (4.1) is obtained by integrating the equation ii

over a typical control volume. For the convection and diffusion fluxes in the x ?ﬁ

and y directions (across the lateral faces of the control volume), the treatment

described in Section 2.3 including the exponential shape function is employed.

The z-direction convection across the upstream and downstream faces of the control
volume is obtained by assuming that the values ¢PU and ¢P respectively prevail over
these faces. Since it is possible that the lateral faces are not exactly parallel
to the z axis, there may also be a z-direction convection across the lateral faces.
This is calculated in terms of the ¢ value obtained at the control volume faces

from the shape function (given by Eq. (2.2)).

In expressing the fluxes across the lateral faces, one is faced with the
choice of using the (known) values of ¢ at the upstream plane, the (unknown) values

of ¢ at the downstream plane, or some combination of these. Thus, the choice is

YT Y

between the expli_it, fully implicit, or Crank-Nicolson formulations, or any other
variants of these. As a result of the considerations expressed in [3], the fully 3

implicit procedure is adapted here. Thus, the known ¢ values on the upstream "1

e IhiCinanky anis
s
4

plane are used only in the calculation of the convection through the upstream face

g

. of the control volume. All other influences in the discretization equation are T

expressed in terms of the unknown ¢ values on the downstream plane.

MY »
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The final discretization equation can be written as

aP ¢P = 3 a . ¢nb + a5y ¢PU +b (4.2)

where apy is the mass flow rate through the upstream face of the control volume.
With the values ¢PU known from the upstream plane, Eq. (4.2) has the same form
as Eq. (2.3); therefore, the solution scheme outlined in Section 2.4 is appli-
cable to Eq. (4.2) as well.

4.4 Calculation of the overall pressure gradient

In a duct flow, the pressure gradient dp/dz driving the z-direction velocity
w is not known beforehand. It must adjust itself so that a given mass flow rate
M can be maintained in the duct despite the resistance offered by the duct walls.
Thus, the satisfaction of the overall mass conservation is a constraint that per-~
mits the determination of dp/dz.

The discretization equation for the mainstream velocity w can be written along
the lines of Eq. (4.2). It is

B wp = lagy vy tapy py th .

- (&V) (dp/dz) (4.3)
where the pressure-gradient term is written separately; its multiplier AV is the
volume of the control volume. The determination of d;/dz is based on the procedure
suggested by Raithby and Schneider [5]. The main idea of the procedure is that,
for a given set of coefficients, all the w values on the downstream plane are
linearly dependent on dp/dz. Thus

vp = o, - B, (dp/dz) (4.4)
where op and BP are unknown constants associated with each node P. Equation (4.4)
can be substituted into Eq. (4.3). Since the resulting relation must hold for any
value of dp/dz, two separate equations can be derived: one composed of terms that

do not contain d;/dz and the other comnosed of the coefficients of d;/dz. Thus,
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ap @p = Ia & *ay; wpy b (4.5)
and
aP BP = zanb gb + AV (4.6)

These equations have the same general form of Eq. (4.2) and can be solved in a
similar fashion to obtain o and BP for every node.
The total mass flow rate M through the duct is given by
M=1Z pP AP vp (4.7)

where Pp and AP denote the density and area associated with the downstream face of
the control volume and the summation is taken over the entire downstream plane.
Combination of Eqs. (4.4) and (4.7) gives

dp/dz = (# - Ip, A, o)/ (Zp, A, 8)) (4.8)

4.5 The overall solution procedure

The complete solution of a three-dimensional duct flow is obtained by repeating
the solution for one forward step in the z direction. For the first forward step,
the values of ¢ on the upstream or the inlet plane are given as a part of the problem
specification. For subsequent forward steps, the ¢ values obtained on the downstream
plane of the previous step become available as the upstream-plane values for the
current step. With this general framework, it is now sufficient to describe the
details of the calculation for one forward step. The various steps in the calculation
sequence are outlined here.

(1) Start with the initfal guess for the ¢ values for the downstream plane.
Usually, the known ¢ values on the upstream plane serve as satisfactory guesses.

(2) Calculate the discretization coefficients for the three momentum equations.

(3) Using these coefficients, solve Eqs. (4.5) and (4.6) to obtain the fields
of a and B.

(4) Determine d;/dz from Eq. (4.8) and hence obtain the values of w from

Eq. (4.4).
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a2

(5) Now calculate G, ¢, d“, and d from Eqs. (2.7), (2.8), and (2.11) appropri-

| S

ately written for the three-dimensional control volume.

D,

(6) Hence solve the three-dimensional counterpart of Eq. (2.14) to obtain the f}
pressure field. ,5;
(7) Considering this as p*, solve the cross-stream momentum equations to get u* ;ﬁ

and v* .

(8) Now set up the pressure-correction equation (2.16) and solve it. Use the

A et om

~ ~ *
resulting p' values to correct u*, v*, u*, and v .

(9) Solve Eq. (4.2) for other relevant variables such as temperature, concen-

-
®
,

tration, turbulence parameters, etc.
(10) Return to step 2 and repeat until convergence.
(11) Treat the downstream ¢ values as the upstream values for the next forward

step and return to step 1 to begin the calculation sequence for the next Az.
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S. Application of the method to some three-dimensional duct flows

In this section, results obtained by applying the proposed method to some
three-dimensional ducts flows are presented. The results are divided into two
sub-scetions: In Section 5.1, ducts of uniform cross-sectional shape and area
are considered; in Section 5.2, ducts of variable cross section are treated.

5.1 Flow through ducts of uniform cross section

Here, two duct geometries are considered. The first example involves dev-
eloping flow in a square duct. The second example considers the flow over rod
bundles. This problem demonstrates the capability of the proposed method to
handle flow through ducts of complex (irregular) cross-sectional shapes.

5.1-1 Developing flow in a square duct

The flow situation considered is shown schematically in Fig. 5.1. A uniform
flow enters a square duct at the entrance plane z = 0. As the flow moves along
the duct, boundary layers on the duct walls grow continuously. After a certain

distance, they merge into each other and the flow tends to attain a fully developed

characte;. Such a fully developed flow is characterized by zero cross-stream
velocities, i.e., u = v = 0, and an axial velocity w which is independent of the
axial location z. Further, in fully developed flow, the axial pressure gradient
d;/dz becomes independent of z and hence P decreases linearly with z.

Computational details

Because of symmetry, only one fourth of the duct is used for computational
purposes. Figure 5.2 shows the cross section of one fourth of the duct and its
discretization into triangular elements. As can be seen, a uniform grid having
N x N grid points is used. For a'N x N grid, the spacing between adjacent grid

points is given by § where
0.5 (5.1)
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Results

(i) The dependence of the computed results on the grid parameters Az and

8§ is shown by reference to fRe, where f is the friction factor defined as

fe(-92) 2o (5.2)
dz" | -2
™
and Re is the Reynolds number given by
pwd
Re = ——
€ " (5.3)

Figure 5.3 shows the computed variation of fRe with dimensionless axial
distance. Results obtained by using different step sizes Az and different number
of grid points in the cross-stream plane are shown. The finest grid used for the
results displayed in Fig. 5.3 corresponds to a dimensionless step size of .0005
and a 17 x 17 grid in the cross-stream plane. All the remaining results to be
presented are based on this grid.

(ii) The variation of mean pressure'; with axial distance z is shown in
Fig. 5.4(a). Also shown are the experimental results of Beavers, et al [6].

The agreement between the computed and experimental results is very good.

Figure 5.4(b) shows the variation of axial velocity at the centerline of the
duct. The experimental results of Goldstein and Kreid [7] have also been plotted
for comparison. Once again, the agreement between the computed and experimental
results is very good.

5.1-2 Developing flow over rod bundles

The second <¢est problem involves computation of developing flow over rod
bundles which are arranged in a regular equilateral triangular arrav. The situ-
ation is shown schematically in Fig. 5.5. Such a flow configuration arises in
nuclear reactors, compact heat exchangers and many other engineering applicatioms.

Computational details

Because of symmetry, the calculation can be confined to the region shown in

Fig. 5.6. The corresponding triangulation is also shown. A 17 x 17gvid was used.
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Figure 5.7(a) shows the variation of pressure‘; with axial distance
for different values of the geometrical parameter s/ro. The development of
centerline velocity is shown in Fig. 5.7(b). The fully developed values of the
centerline w are in good agreement with thos obtained by Sparrow and Loeffler [8].

5.2 Flow through ducts of varying cross-sectional shape and area

The most important feature of the proposed method is its capability to
compute the flow through ducts of varying cross-sectional shape and area. Since
no experimental or analytical results are available for such ducts, a procedure is
devised here to "fabricate" exact solutions for developing flow in ducts of varying
cross sections. These exact solutions are used to check the accuracy of the numeri-
cal solution,

5.2-1 Formulation of the exact solutions

The central idea of the method can be summarized as follows:

(1) Propose a velocity field ;exact which satisfies the continuity equation

and certain boundary conditions. Also propose a pressure field.

(ii) Compute the source terms in the momentum equations, Su, Sv, and Sw, such

that the velocity field ;exact satisfies the momentum equatioms.

If the resulting expressions for the source terms are considered as given
"body forces" in the problem specification, then :exact is indeed the exact solution
of the flow equations (along with the assumed pressure field).

Case A: Square diffuser with parabolic velocity profile

For a square-sectioned diffuser, shown in Fig. 5.8, the half-side D linearly

increases at a rate of dD/dz = a. The exact solution for the velocity field is

given by

we2H (02-y?) (0%-x (5.4)
o

- 9hx  (0°-y
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V= 2Ry (02-y?) (02 (5.6) :;:i
16p 0 06 J
3
3 4
55., 0 (5.7)
)}
3p _ (5.8)
5 =0 ;
g
]
02 . J
-4 . 9N y,3M u
dz 50 p 5 20 Dl' (5.9) -3
k]
s¥ = 28 2 yx (3002-yD)+ (0242 2
80 p7 :
81 M2 yx (2. 2,2 (2. 2,2 ri
- ﬁg—p'g% (0%-y")" (07-x (5.10) T
;
s¥ = %%—‘; yy 3(02-x})+(02-y?)] ;i
D 1
81 M2 vy 22,2 2 2,2
" 128 5 D“‘ (0°-y")° (D%-x%) (5.11)
: L4
[ w_9H 22,02 2y _h 2 |
< s gp;%[(ox)+(o vY) - 307 )
o .2
_ 8V My 222,02 2,2 bk B
. T8 - gry [OTTOTYDT g 0 ]
. where M is the mass flow rate through the duct. fi
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Case B: Elliptic ducts

Fig. 5.9 Cross section of an elliptic duct

The cross section of an elliptic duct is shown in Fig. 5.9. The semi-major
axis D and the semi-minor axis Dx are both functions of the axial coordinate z.

Let the variation of Dx and Dy be given by:

(5.13)
Dx = D° + Y2

and

- = 2 (5.14)
Dy Dx constant D°

where Y and D, are two arbitrary constants. Thus, at z = 0, the cross-section of

0

the duct is a circle of radius DO. The exact solution for the velocity field can

be expressed as

[( x?) + (D yH)1 (5.15)

=I|N

O |Xe
cz{

o -—

v T [(D x%) + (Ds'yz)] (5.16)

Lol = O
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D
y D4
3p .
Ix 0
2,
ay 0
-Qégiﬁu 2 2
dz TP ;E [Dx + Dy]
o]

provided that the source terms in the momentum equations are given by

TN BT N B
s M[—)%v(ox) (307 + 0]
0

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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and
s¥ =0 (5.23)
Here, the coefficient B is defined as
dD (5.24)
B=—L
dz

In the use of the calculation procedure for these test problems, computations
were performed both with and without the momentum source terms. The results of
the former can be comared with the exact solutions, while the latter computation
shows how the flow will behave in reality without the artificial "body forces".

5.2-2 Flow through a square diffuser

With reference to Fig. 5.8, the geometry of the square diffuser is defined

in terms of:

2D = Din + az (5.25)
Thus,
2 2 (5.26)
or
D= D0 + vz
(5.27)
where
D, =D, /2
0 “in (5.28)
Y =a/2 (5.29)

The computations were performed by using a 17 x 17 grid similar in pattern to
the one in Fig. 5.2.

Figure 5.10 shows the variation of axial pressure gradient dP/dzZ with Z,
where the dimensionless distance Z is defined by

Z = z/(Re ) (5.30)

in Din
Figure 5.10(a) shows the results with the source terms, while Fig. 5.10(b)

displays the implications of the usual momentum equations. The dashed lines in
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Fig. 5.10(a) represent the exact solution; the agreement can be seen to be very
good. For the flow without the extra source terms, separation is encountered for
large angles of the diffuser.

The variation of centerline velocity with the axial distance Z is shown in
Fig. 5.11. Once again, good agreement with the exact solution is seen in
Fig. 5.11(a), while the flow separation in absence of the special source terms is
evident in Fig. 5.11(b). The development of the axial velocity profiles for the
case of zero source terms is shown in Fig. 5.12. The profiles at flow separation
can be seen to exhibit an inflexion point at the wall.

5.2-3 Flow through an elliptic duct

For the flow through an elliptic duct, the following geometrical relations

are used.

20, =D, +oz (5.31)

(Din).(Din)

ZDy = —(ﬁ;)—— (5.32)

Dy = 0;4/2 (5.33)
Y = a/2 (5.34)
D, = Dg + Y2 (5.35)
o~ Dé/b“ (5.36)
Thus, at the inlet, thée cross section of the duct is a circle of diameter Din
(radius D, = Din/z)'

Because of symmetry, only one quarter of the duct needs to be considered. A
cross section of the quarter of the duct, and its discretization into triangular

elements is shown in Fig. 5.13. A 17 x 17 grid is used.
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Fig. 5.13 Discretization for the elliptic duct
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The variation of dimensionless axial pressure gradient dP/dZ with the axial
distance Z is shown in Fig. 5.14 for a range of values aRein. The results for the
flow with source terms are displayed in Fig. 5.14(a) and the results without the
source terms are shown in Fig. 5.14(b). It is evident from Fig. 5.14(a) that
the computed results are in good agreement with the exact solution even for large
values of aRein.

The variation of axial velocity (w/;in) on the semi-major and semi-minor axes
of the ellipse for the flow with source terms is shown in Fig. 5.15. Also shown
is the exact solution. The agreement between the computed and exact velocity
profiles can be seen to be very good. The velocity profiles for the flow without

source terms are shown in Fig. 5.16.

6. Concluding remarks

This report has described the development of a calculation procedure for
three-dimensional flow in ducts of varying cross sections. The procedure is dev-
eloped in two stages. First, a calculation scheme for two-dimensional flows is
described. Then, it is used as the solution method over a cross section of a duct
in a marching procedure. Examples of both two-dimensional flows and three-dimen-
sional duct flows are provided to demonstrate the capabilities of the proposed
procedure.

Further work in this research project consists of additional testing of the
method and the development of pratially parabolic and fully elliptic procedures

for more complex duct flows.
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